
INDEX

S.No Table of contents Page No

 Certificate i

 Certificate of Company ii

 Declaration iii

 Acknowledgement iv

 List of Figures v

 List of Tables vi

1 Introduction 1

 1.1 Overview 1

 1.2 About Company 1

 1.3 Report Organization 1

2 System Requirements and analysis 3

 2.1 System Overview 3

 2.2 Objectives 3

 2.3 Project Scope 4

3 Software Requirements specifications 5

 3.1 Role of SRS 5

 3.2 Software Interface 5

 3.3 Hardware Interface 6

4 Software Description 7

 4.1 Technologies Used 7

 4.2 Front End Technologies 7

 4.3 Back End Technologies 15

5 System Design 23

 5.1 Introduction 23

 5.2 Use Case Diagrams 25

 5.3 Introduction to Data Flow Diagrams 27

 5.4 Data Flow Level Diagrams for eMart 30

6 Project Codings 34

7 System Testing 44

 7.1 Test Cases 44

 7.2 Unit/System Testing 47

8 Screenshots of the Project 50

 8.1 Database Screenshots 50

 8.2 Web pages Screenshots 56

9 Conclusion 71

 9.1 Future Scope 71

 Bibliography 72

v

LIST OF FIGURES

S.No. Name Page No.

Figure 1 Use Case User Diagram 25

Figure 2 Use Case Admin Diagram 26

Figure 3 Level 0: DFD 30

Figure 4 Level 1: DFD 31

Figure 5 Level 2: DFD 32

Figure 6 Level 3: DFD 33

Figure 7 User Table of Website 50

Figure 8 Category Table of Website 51

Figure 9 Sub-Category Table of Website 52

Figure 10 Sell Table of Website 53

Figure 11 Buy Table of Website 54

Figure 12 Shipment Table of Website 55

Figure 13 Home Page of Website 56

Figure 14 Registration Page of Website 57

Figure 15 Product Display Page of Website 58

Figure 16 Product Description Page of

Website

59

Figure 17 Buy Confirm Page of Website 60

Figure 18 Buy Page of Website 61

Figure 19 Account Page of Website 62

Figure 20 Sell Page of Website 63

Figure 21 Help Page of Website 64

Figure 22 Result Page of Website 65

Figure 23 Add to Cart Page of Website 66

Figure 24 Checkout Page of Website 67

Figure 25 Shipment Page of Website 68

Figure 26 Payment Gateway Page of

Website

69

Figure 27 Verified By Visa Page of

Website

70

vi

LIST OF TABLES

S.No. Name Page No.

Table 1 Registration Form 44

Table 2 Login Form 45

Table 3 Sell Form 45

Table 4 Change Account Details 46

Table 5 Change Password 46

Table 6 Buy Form 46

Table 7 Gateway Form 47

Table 8 Verified By Visa Form 47

1

CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

Project eMart is a web application which is an ecommerce website. It is designed to help users

shop online at home with easy attractive interface. Through this project I want users to provide a

service where users don’t have to do hard work for searching products around the market, when

full market can be available to the users at their home. In this project users will get a fast and

easy way to buy and sell products and keep a record of it. I chose this project to solve problems

of people who find it difficult to shop outside or who have less access of the market. When

anything or everything can be available to you by just sitting at home then why search outside.

1.2 ABOUT COMPANY

Since 2001, 4qt.com has been developing custom software, web, database and mobile

application development delivering world-class services for established businesses and start-up

companies. A trusted business partner and consultant to our customers, 4qt.com leverages a

powerful blend of the best industry-proven practices, standards based technologies, market

understanding and extensive hands-on experience to meet our clients toughest challenges.

4qt.com is committed to creating reliable and cost effective software solutions to assist

customers in reaching their business goals. Our solutions are driven by expertise in technology

and an understanding of emerging business trends. Our custom made designs can help you

enhance your corporate identity and brand. Our custom designed desktop or web software can

help you with increased organizational productivity through automation of your business

processes.

4th Quarter Technologies is a great place to work where you enjoy friendly work environment

and great team of people.

1.3 REPORT ORGANISATION

The report is organized in the following way:

Chapter 1 starts with a brief introduction of the application and information about the company .

2

Chapter 2 focuses on analyzing the system by pointing out limitations of the existing system

and how the proposed system is intended to solve the above said limitations. It also takes into

account the feasibility study of the proposed system.

Chapter 3 deals with system specification i.e. the hardware and the software requirements for

building and deploying the application.

Chapter 4 describes the software with its features that is used to build this web application. The

front end and backend software with their general features are described in this section.

Chapter 5 gives details about system modules, use case diagrams and data flow diagrams.

Chapter 6 provides code used in creating the application. Code is written using PHP and

designing is done using html5, css3, javascript and jquery.

Chapter 7 includes about test cases and unit/system testing which show required validations

performed during development.

Chapter 8 includes snapshots of the web application i.e. the user interface of the system.

Chapter 9 summarizes the report under the heading conclusion and also provides future scope of

the system.

3

CHAPTER 2

SYSTEM REQUIREMENTS AND ANALYSIS

2.1 SYSTEM OVERVIEW

2.1.1 EXISTING SYSTEM

In general, ecommerce websites have features of selling and buying but they don’t have a shop

feature. The existing ecommerce websites doesn’t have a feature of shipment details. The feature

shipment details gives the seller and buyer an ability to post the courier details from which

courier and the track id the seller has ship the item so that the buyer can track his order online.

This gives buyer a trust for online shopping. Existing ecommerce also doesn’t include wallet

feature.

2.1.2 PROPOSED SYSTEM

The Proposed system ensures the complete freedom for users, where user at his own choice can

sell and buy and save all the details regarding buy products, sold products and posted products in

their account. Also the proposed system provides shop feature that represents user’s own shop

with their respective posted products. This system also provides the shipment feature. This

website also holds a feature of refund complain, where the buyer, if found the item faulty or not

as described by the seller can ask for a refund. Then it’s our duty to rectify the problem and

details with the seller and buyer for further actions. This system also have a wallet feature where

the user can save their money as eMart cash which can be further used for online shopping at the

same website only.

2.2 OBJECTIVES

• To provide users at ease of selling and buying.

• To provide them a simple and efficient list of products from all around the country.

• To provide them more chance of selling their products.

• To help them by saving their every transaction on the go.

• To help them provide with more varieties and various new trends in market sitting at

home.

4

2.3 PROJECT SCOPE

This project aims to provide users with fast and vast access of the market in India that the sellers

want to bring to them. Users get easy access of variety of categories sitting at home, compare

products with their features and description listed. Users will get a simple and efficient

environment not just to buy but also to sell their own products, which can provide them a large

amount of profit.

This project will help users in their selling their old or new products or buy products from other

users and keep data or transactions intact along in their respective account for future reference (if

any).

5

CHAPTER 3

SOFTWARE REQUIREMENT SPECIFICATION

A software requirements specification (SRS) is a complete description of the behavior of the

software to be developed. It includes a set of use cases that describe all of the interactions that

the users will have with the software. In addition to use cases, the SRS contains functional

requirements, which define the internal workings of the software: that is, the calculations,

technical details, data manipulation and processing, and other specific functionality that shows

how the use cases are to be satisfied. It also contains nonfunctional requirements, which impose

constraints on the design or implementation (such as performance requirements, quality

standards or design constraints).

The SRS phase consists of two basic activities:

1) Problem/Requirement Analysis

The process is order and more nebulous of the two, deals with understanding the problem, the

goal and constraints.

2) Requirement Specification

Here, the focus is on specifying what has been found giving analysis such as representation,

specification languages and tools, and checking the specifications are addressed during this

activity.

The Requirement phase terminates with the production of the validate SRS document.

Producing the SRS document is the basic goal of this phase.

3.1 Role of SRS

The purpose of the Software Requirement Specification is to reduce the communication gap

between the clients and the developers. Software Requirement Specification is the medium

though which the client and user needs are accurately specified. It forms the basis of software

development. A good SRS should satisfy all the parties involved in the system.

3.2 Software Interface

Developer Side:

Operating System Windows 7

 Application System ANY

6

Database MySQL

Programming language PHP

Development IDE phpDesigner 8

Client Side:

Operating System Any

Web Browser Any

Server side:

Operating system Any

Application Server ANY

 DBMS MySQL

3.3 Hardware Interface

Developer side:

 Processor RAM Disk Space

 Intel core i5 8gb 1tb

Client Side:

 ANY 512MB 1gb

Server Side:

 Server Environment

Capable Hardware

2 GB As per the Size of

the required Data

base

Communication Interface:

 Client on internet will be using HTTP/HTTPS protocol

 Client on internet will be using TCP/IP protocols

Constraints:

 GUI is only in English.

 Login and Password is used for identification of Admin, Client and there is no facility for

guest.

 This System is working for single server.

 There is no Maintainability of backup so availability will get effected.

 Limited to HTTP/HTTPS

7

CHAPTER 4

SOFTWARE DESCRIPTION

4.1 TECHNOLOGIES USED

 FRONT END

 HTML

 CSS

 JAVASCRIPT

 AJAX

 BACK END

 PHP

 MYSQL DATABASE

4.2 FRONT END TECHNOLOGIES

4.2.1 HTML AND CSS

HTML

HyperText Markup Language(HTML) is the standard markup language used to create web

pages.

HTML is written in the form of HTML elements consisting of tags enclosed in angle brackets

(like <html>). HTML tags most commonly come in pairs like <h1> and </h1>, although some tags

represent empty elements and so are unpaired, for example . The first tag in a pair is the

start tag, and the second tag is the end tag (they are also called opening tags and closing tags).

The purpose of a web browser is to read HTML documents and compose them into visible or

audible web pages. The browser does not display the HTML tags, but uses the tags to interpret

the content of the page. HTML describes the structure of a website semantically along with cues

for presentation, making it a markup language rather than a programming language.

HTML elements form the building blocks of all websites. HTML allows images and objects to

be embedded and can be used to create interactive forms. It provides a means to create structured

documents by denoting structural semantics for text such as headings, paragraphs, lists, links,

quotes and other items. It can embed scripts written in languages such as JavaScript which affect

the behavior of HTML web pages.

8

Web browsers can also refer to Cascading Style Sheets (CSS) to define the look and layout of

text and other material. The W3C, maintainer of both the HTML and the CSS standards,

encourages the use of CSS over explicit presentational HTML.

DHTML

Dynamic HTML, or DHTML, is an umbrella term for a collection of technologies used together

to create interactive and animated web sites by using a combination of a static markup language

(such as HTML), a client-side scripting language (such as JavaScript), a presentation definition

language (such as CSS), and the Document Object Model.

DHTML allows scripting languages to change variables in a web page's definition language,

which in turn affects the look and function of otherwise "static" HTML page content, after the

page has been fully loaded and during the viewing process. Thus the dynamic characteristic of

DHTML is the way it functions while a page is viewed, not in its ability to generate a unique

page with each page load.

By contrast, a dynamic web page is a broader concept, covering any web page generated

differently for each user, load occurrence, or specific variable values. This includes pages created

by client-side scripting, and ones created by server-side scripting (such as PHP, Perl, JSP or

ASP.NET) where the web server generates content before sending it to the client.

DHTML is differentiated from Ajax by the fact that a DHTML page is still request/reload-based.

With DHTML, there may not be any interaction between the client and server after the page is

loaded; all processing happens in JavaScript on the client side. By contrast, an Ajax page uses

features of DHTML to initiate a request (or 'subrequest') to the server to perform actions such as

loading more content.

WYSIWYG EDITORS

There are some WYSIWYG editors (What You See Is What You Get), in which the user lays out

everything as it is to appear in the HTML document using a graphical user interface (GUI), often

similar to word processors. The editor renders the document rather than show the code, so

authors do not require extensive knowledge of HTML.

9

The WYSIWYG editing model has been criticized, primarily because of the low quality of the

generated code; there are voices advocating a change to the WYSIWYM model (What You See

Is What You Mean).

WYSIWYG editors remain a controversial topic because of their perceived flaws such as:

• Relying mainly on layout as opposed to meaning, often using markup that does not convey the

intended meaning but simply copies the layout.

• Often producing extremely verbose and redundant code that fails to make use of the cascading

nature of HTML and CSS.

• Often producing ungrammatical markup often called tag soup or semantically incorrect markup

(such as for italics).

• As a great deal of the information in HTML documents is not in the layout, the model has been

criticized for its "what you see is all you get"-nature.

CSS

Cascading Style Sheets (CSS) is a style sheet language used for describing the look and

formatting of a document written in a markup language. While most often used to style web

pages and interfaces written in HTML and XHTML, the language can be applied to any kind of

XML document, including plain XML, SVG and XUL. CSS is a cornerstone specification of the

web and almost all web pages use CSS style sheets to describe their presentation.

CSS is designed primarily to enable the separation of document content from document

presentation, including elements such as the layout, colors, and fonts. This separation can

improve content accessibility, provide more flexibility and control in the specification of

presentation characteristics, enable multiple pages to share formatting, and reduce complexity

and repetition in the structural content (such as by allowing for table less web design).

CSS can also allow the same markup page to be presented in different styles for different

rendering methods, such as on-screen, in print, by voice (when read out by a speech-based

browser or screen reader) and on Braille-based, tactile devices. It can also be used to allow the

web page to display differently depending on the screen size or device on which it is being

viewed. While the author of a document typically links that document to a CSS file, readers can

use a different style sheet, perhaps one on their own computer, to override the one the author has

10

specified. However if the author or the reader did not link the document to a specific style sheet

the default style of the browser will be applied.

CSS specifies a priority scheme to determine which style rules apply if more than one rule

matches against a particular element. In this so-called cascade, priorities or weights are

calculated and assigned to rules, so that the results are predictable.

SYNTAX

• A CSS rule set consists of a selector and a declaration block:

• The selector points to the HTML element you want to style.

• The declaration block contains one or more declarations separated by semicolons.

• Each declaration includes a property name and a value, separated by a colon.

CSS EXAMPLE WITH COMMENTS

/*This is a multiple

lines comment*/

p

{

color:red;

/*This is another comment*/

text-align:center;

}

11

4.2.2 JAVASCRIPT

JAVASCRIPT

JavaScript (JS) is a dynamic computer programming language.[5] It is most commonly used as

part of web browsers, whose implementations allow client-side scripts to interact with the user,

control the browser, communicate asynchronously, and alter the document content that is

displayed. It is also being used in server-side programming, game development and the creation

of desktop and mobile applications.

JavaScript is a prototype-based scripting language with dynamic typing and has first-class

functions. Its syntax was influenced by C. JavaScript copies many names and naming

conventions from Java, but the two languages are otherwise unrelated and have very different

semantics. The key design principles within JavaScript are taken from the Self and Scheme

programming languages. It is a multi-paradigm language, supporting object-oriented, imperative,

and functional programming styles.

The application of JavaScript in use outside of web pages—for example, in PDF documents, site-

specific browsers, and desktop widgets—is also significant. Newer and faster JavaScript VMs

and platforms built upon them (notably Node.js) have also increased the popularity of JavaScript

for server-side web applications. On the client side, JavaScript was traditionally implemented as

an interpreted language but just-in-time compilation is now performed by recent (post-2012)

browsers.

JavaScript was formalized in the ECMAScript language standard and is primarily used as part of

a web browser (client-side JavaScript). This enables programmatic access to computational

objects within a host environment.

JAVASCRIPT SYNTAX AND EXAMPLE

The syntax of JavaScript is the set of rules that define a correctly structured JavaScript program.

The examples below make use of the alert function for standard text output. The JavaScript

standard library lacks an official standard text output function. However, given that JavaScript is

12

mainly used for client-side scripting within modern web browsers, and that almost all web

browsers provide the alert function, alert is used in the examples.

VARIABLES

var x; //defines the variable x, although no value is assigned to it by default

var y = 2; //defines the variable y and assigns the value of 2 to it

A SIMPLE RECURSIVE FUNCTION:

function factorial(n) {

 if (n === 0) {

 return 1;

 }

 return n * factorial(n - 1);

}

JQUERY

jQuery is a cross-platform JavaScript library designed to simplify the client-side scripting of

HTML. It was released in January 2006 at BarCamp NYC by John Resig. It is currently

developed by a team of developers led by Dave Methvin. Used by over 80% of the 10,000 most

visited websites, jQuery is the most popular JavaScript library in use today.

jQuery is free, open source software, licensed under the MIT License. jQuery's syntax is

designed to make it easier to navigate a document, select DOM elements, create animations,

handle events, and develop Ajax applications. jQuery also provides capabilities for developers to

create plug-ins on top of the JavaScript library. This enables developers to create abstractions for

low-level interaction and animation, advanced effects and high-level, theme-able widgets. The

modular approach to the jQuery library allows the creation of powerful dynamic web pages and

web applications.

The set of jQuery core features — DOM element selections, traversal and manipulation —

enabled by its selector engine (named "Sizzle" from v1.3), created a new "programming style",

13

fusing algorithms and DOM-data-structures; and influenced the architecture of other JavaScript

frameworks like YUI v3 and Dojo.

Microsoft and Nokia bundle jQuery on their platforms. Microsoft includes it with Visual

Studio[8] for use within Microsoft's ASP.NET AJAX framework and ASP.NET MVC

Framework while Nokia has integrated it into the Web Run-Time widget development platform.

jQuery has also been used in MediaWiki since version 1.16.

JQUERY FEATURES

jQuery includes the following features:

• DOM element selections using the multi-browser open source selector engine Sizzle, a spin-off

of the jQuery project.

• DOM manipulation based on CSS selectors that uses node elements name and node elements

attributes (id and class) as criteria to build selectors

• Events

• Effects and animations

• AJAX

• JSON parsing

• Utilities - such as user agent information, feature detection

• Compatibility methods that are natively available in modern browsers but need fall backs for

older ones - For example the inArray() and each() functions.

• Multi-browser (not to be confused with cross-browser) support.

INCLUDING THE LIBRARY

The jQuery library is a single JavaScript file, containing all of its common DOM, event, effects,

and Ajax functions. It can be included within a web page by linking to a local copy, or to one of

the many copies available from public servers.

From local host:

<script type="text/javascript" src="jquery.js"></script>

It is also possible to include jQuery directly from content delivery networks.

<script src="http://code.jquery.com/jquery-1.11.min.js"></script>

14

4.2.3 AJAX

AJAX

Ajax (an acronym for Asynchronous JavaScript and XML) is a group of interrelated Web

development techniques used on the client-side to create asynchronous Web applications. With

Ajax, Web applications can send data to, and retrieve data from, a server asynchronously (in the

background) without interfering with the display and behavior of the existing page. Data can be

retrieved using the XMLHttpRequest object. Despite the name, the use of XML is not required;

JSON is often used instead (see AJAJ), and the requests do not need to be asynchronous.

Ajax is not a single technology, but a group of technologies. HTML and CSS can be used in

combination to mark up and style information. The DOM is accessed with JavaScript to

dynamically display, and allow the user to interact with, the information presented. JavaScript

and the XMLHttpRequest object provide a method for exchanging data asynchronously between

browser and server to avoid full page reloads.

AJAX TECHNOLOGIES

The term Ajax has come to represent a broad group of Web technologies that can be used to

implement a Web application that communicates with a server in the background, without

interfering with the current state of the page. In the article that coined the term Ajax, Jesse James

Garrett explained that the following technologies are incorporated:

• HTML (or XHTML) and CSS for presentation

• The Document Object Model (DOM) for dynamic display of and interaction with data

• XML for the interchange of data, and XSLT for its manipulation

• The XMLHttpRequest object for asynchronous communication

• JavaScript to bring these technologies together

15

4.3 BACK END TECHNOLOGIES

4.3.1 PHP

PHP

PHP is a server-side scripting language designed for web development but also used as a

general-purpose programming language. As of January 2013, PHP was installed on more than

240 million websites (39% of those sampled) and 2.1 million web servers. Originally created by

Rasmus Lerdorf in 1995, the reference implementation of PHP is now produced by The PHP

Group. While PHP originally stood for Personal Home Page, it now stands for PHP: Hypertext

Preprocessor, a recursive backronym.

PHP code is interpreted by a web server with a PHP processor module, which generates the

resulting web page: PHP commands can be embedded directly into an HTML source document

rather than calling an external file to process data. It has also evolved to include a command-line

interface capability and can be used in standalone graphical applications.

PHP is free software released under the PHP License. PHP can be deployed on most web servers

and also as a standalone shell on almost every operating system and platform, free of charge.

PHP SYNTAX AND SEMANTICS

The PHP syntax and semantics are the format (syntax) and the related meanings (semantics) of

the text and symbols in the PHP programming language. They form a set of rules that define how

a PHP program can be written and interpreted. PHP is a procedural and object-oriented language

for coding webpage markup text to be transformed into HTML format.

Basic language constructs

Each PHP statement is terminated by semicolon (";"). The PHP markup can display text by using

"echo" with variables named by dollar-prefix "$" on case-sensitive names ($xx, $xX, $NewX,

etc.). The assignment operator is "=". The markup can be modularized into functions (or

methods) defined with keyword "function" within optional classes named by "class xx". The

control structures include: if, while, for, foreach, & switch. Grouping of text can be specified by

curly braces ("{...}"), but some control structures can use colon syntax with end keywords, such

as in statement if ($x==0) : echo "zero"; endif; <html>

16

Delimiters

The PHP processor only parses code within its delimiters. Anything outside its delimiters is sent

directly to the output and not parsed by PHP. The most common open/close delimiters are

"<?php" and "?>" so that a section of PHP markup appears within the set of angle-brackets

"<?php.....?>" (see examples below in boxes). Other delimiters, in the form "<script

language="php">" and "</script>", are also always available, so these two forms are the most

portable. The first form of delimiters, <?php and ?>, in XHTML and other XML documents,

creates correctly formed XML processing instructions. Therefore, in either of these two cases,

the resulting mixture of PHP and other markup is well-formed, and so probably valid, as XML

and XHTML on the server before PHP processing. This may be helpful if the source code

documents ever need to be processed in other ways during the life of the software.

Short opening tags (<? or <?=) are also available for use, but are, along with ASP style tags (<%

or <%=), less-portable, as they can be disabled in the PHP configuration. For this reason, the use

of Short tags and ASP style tags is discouraged. The purpose of these delimiters is to separate

PHP code from non-PHP code (notably HTML). Everything outside the delimiters is ignored by

the PHP parser and is passed through as output.

Variables and comments

One of the language characteristic features is implicit variable declaration. Variables are prefixed

with a dollar symbol and a type does not need to be specified in advance. Unlike function and

class names, variable names are case-sensitive. Both double-quoted ("") and heredoc strings

allow the ability to embed a variable's value into the string. PHP treats newlines as whitespace,

in the manner of a free-form language (except when inside string quotes). Statements are

terminated by a semicolon. PHP has three types of comment syntax: /* */ which serves as block

comments, and // as well as # which are used for inline comments. Many examples use the print

function instead of the echo function. Both functions are nearly identical; the major difference

being that print is slower than echo because the former will return a status indicating if it was

successful or not in addition to text to output, whereas the latter does not return a status and only

returns the text for output.

The usual "Hello World" code example for PHP is:

17

<?php

echo "Hello World!\n";

?>

The example above outputs the following:

Hello World!

Instead of using <? and the echo statement, an optional "shortcut" is the use of <?= instead of <?

which implicitly echoes data. For example, to show the page_title:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"

 "http://www.w3.org/TR/html4/strict.dtd">

<html>

 <head>

 <title><?=$page_title;?></title>

 </head>

 <body>

 <p>Hello World!</p>

 </body>

</html>

The above example also illustrates that text not contained within enclosing PHP tags will be

directly output. So the simplest form of Hello World in PHP is a plain text file containing "Hello

World".

Data types

PHP stores whole numbers in a platform-dependent range. This range is typically that of 32-bit

signed integers. Integer variables can be assigned using decimal (positive and negative), octal

and hexadecimal notations. Real numbers are also stored in a platform-specific range. They can

be specified using floating point notation, or two forms of scientific notation. PHP has a native

Boolean type, named "boolean", similar to the native Boolean types in Java and C++. Using the

Boolean type conversion rules, non-zero values are interpreted as true and zero as false, as in

Perl. The null data type represents a variable that has no value. The only value in the null data

18

type is NULL. Variables of the "resource" type represent references to resources from external

sources. These are typically created by functions from a particular extension, and can only be

processed by functions from the same extension. Examples include file, image and database

resources. Arrays can contain elements of any type that PHP can handle, including resources,

objects, and even other arrays. Order is preserved in lists of values and in hashes with both keys

and values, and the two can be intermingled. Objects can syntactically be used as Arrays.

Functions

PHP has hundreds of base functions and thousands more from extensions. Functions are not first-

class functions and can only be referenced by their name prior to PHP version 5.3.0, whereas

PHP 5.3.0 introduces closures. User-defined functions can be created at any time and without

being prototyped. Functions can be defined inside code blocks, permitting a run-time decision as

to whether or not a function should be defined.

An example function definition is the following:

<?php

function hello($target='World')

{

 echo "Hello $target!\n";

}

hello();

?>

Prior to version 5.3, PHP only supports quasi-anonymous functions through the create_function()

function. These are not true anonymous functions because anonymous functions are nameless

but functions can only be referenced by name in PHP. As of version 5.3, PHP supports true

anonymous functions.

Function calls may be made via variables, where the value of a variable contains the name of the

function to call. This is illustrated in the following example:

<?php

function hello()

{

 return 'Hello';

19

}

function world()

{

 return "World!";

}

$function1 = 'hello';

$function2 = 'world';

echo $function1() . ' ' . $function2();

?>

PHP does not support named parameters or parameter skipping. Some core PHP developers have

publicly expressed disappointment with this decision. Others have suggested workarounds for

this limitation.

20

4.3.2 MYSQL

MYSQL

MySQL is (as of March 2014) the world's second most widely used open-source relational

database management system (RDBMS). It is named after co-founder Michael Widenius's

daughter, My. The SQL phrase stands for Structured Query Language.

The MySQL development project has made its source code available under the terms of the

GNU General Public License, as well as under a variety of proprietary agreements. MySQL was

owned and sponsored by a single for-profit firm, the Swedish company MySQL AB, now owned

by Oracle Corporation.

MySQL is a popular choice of database for use in web applications, and is a central component

of the widely used LAMP open source web application software stack (and other 'AMP' stacks).

LAMP is an acronym for "Linux, Apache, MySQL, Perl/PHP/Python." Free-software-open

source projects that require a full-featured database management system often use MySQL.

For commercial use, several paid editions are available, and offer additional functionality.

Applications which use MySQL databases include: TYPO3, MODx, Joomla, WordPress,

phpBB, MyBB, Drupal and other software. MySQL is also used in many high-profile, large-

scale websites, including Wikipedia, Google (though not for searches), Facebook, Twitter,

Flickr, and YouTube.

Features

As of April 2009, MySQL offered MySQL 5.1 in two different variants: the open source MySQL

Community Server and the commercial Enterprise Server. MySQL 5.5 is offered under the same

licenses. They have a common code base and include the following features:

 A broad subset of ANSI SQL 99, as well as extensions

 Cross-platform support

 Stored procedures, using a procedural language that closely adheres to SQL/PSM

 Triggers

 Cursors

 Updatable views

 Information schema

21

 Strict mode (ensures MySQL does not truncate or otherwise modify data to conform to an

underlying data type, when an incompatible value is inserted into that type)

 X/Open XA distributed transaction processing (DTP) support; two phase commit as part

of this, using Oracle's InnoDB engine

 Independent storage engines (MyISAM for read speed, InnoDB for transactions and

referential integrity, MySQL Archive for storing historical data in little space)

 Transactions with the InnoDB and NDB Cluster storage engines; savepoints with InnoDB

 SSL support

 Query caching

 Sub-SELECTs (i.e. nested SELECTs)

 Replication support (i.e. Master-Master Replication & Master-Slave Replication) with

one master per slave, many slaves per master. Multi-master replication is provided in

MySQL Cluster, and multi-master support can be added to unclustered configurations

using Galera Cluster.

 Full-text indexing and searching (initially a MyISAM-only feature; supported by InnoDB

since the release of MySQL 5.6)

 Embedded database library

 Unicode support (however prior to 5.5.3 UTF-8 and UCS-2 encoded strings are limited to

the BMP, in 5.5.3 and later use utf8mb4 for full unicode support)

 ACID compliance when using transaction capable storage engines (InnoDB and Cluster)

 Partitioned tables with pruning of partitions in optimizer

 Shared-nothing clustering through MySQL Cluster

 Multiple storage engines, allowing one to choose the one that is most effective for each

table in the application (in MySQL 5.0, storage engines must be compiled in; in MySQL

5.1, storage engines can be dynamically loaded at run time):

 Native storage engines (MyISAM, Falcon, Merge, Memory (heap), Federated, Archive,

CSV, Blackhole, Cluster, EXAMPLE, Aria, and InnoDB, which was made the default as

of 5.5)

22

 Partner-developed storage engines (solidDB, Infobright (formerly Brighthouse), Kickfire,

XtraDB, IBM DB2). InnoDB used to be a partner-developed storage engine, but with

recent acquisitions, Oracle now owns both MySQL core and InnoDB.

 Community-developed storage engines (memcache engine, httpd, PBXT, Revision

Engine)

 Custom storage engines

 Commit grouping, gathering multiple transactions from multiple connections together to

increase the number of commits per second. (PostgreSQL has an advanced form of this

functionality)

 The developers release monthly versions of the MySQL Server. The sources can be

obtained from MySQL's website or from MySQL's Bazaar repository, both under the

GPL license.

Limitations

Like other SQL databases, MySQL does not currently comply with the full SQL standard for

some of the implemented functionality, including foreign key references when using some

storage engines other than the 'standard' InnoDB (or third-party engines which supports foreign

keys).

Up until MySQL 5.7, triggers are limited to one per action / timing, meaning that at most one

trigger can be defined to be executed after an INSERT operation, and one before INSERT on the

same table. No triggers can be defined on views.

MySQL, like most other transactional relational databases, is strongly limited by hard disk

performance. This is especially true in terms of write latency. Given the recent appearance of

very affordable consumer grade SATA interface solid-state drives that offer zero mechanical

latency, a fivefold speedup over even an eight drive RAID array can be had for a smaller

investment.

MySQL database's inbuilt functions like UNIX_TIMESTAMP() will return 0 after 03:14:07

UTC on 19 January 2038.

23

CHAPTER 5

SYSTEM DESIGN

5.1 INTRODUCTION

Systems design is the process or art of defining the architecture, components, modules,

interfaces, and data for a system to satisfy specified requirements. One could see it as the

application of systems theory to product development. There is some overlap and synergy with

the disciplines of systems analysis, systems architecture and systems engineering.

5.1.1 Unified Modeling Language:

UML stands for Unified Modeling Language. It is a third generation method for specifying,

visualizing and documenting the artifacts of an object oriented system under development.

Object modeling is the process by which the logical objects in the real world (problem space) are

represented (mapped) by the actual objects in the program (logical or a mini world). This visual

representation of the objects, their relationships and their structures is for the ease of

understanding. This is a step while developing any product after analysis.

The goal from this is to produce a model of the entities involved in the project which later need

to be built. The representations of the entities that are to be used in the product being developed

need to be designed.

Software design is a process that gradually changes as various new, better and more complete

methods with a broader understanding of the whole problem in general come into existence.

The Unified Modeling Language encompasses a number of models.

 Use case diagrams

 Class diagrams

 Sequence diagrams

5.1.2 Use Case Diagram

Use case diagram consists of use cases and actors and shows the interaction between them. The

key points are:

 The main purpose is to show the interaction between the use cases and the actor.

 To represent the system requirement from user’s perspective.

 The use cases are the functions that are to be performed in the module.

24

5.1.3 Class Diagram

Class Diagram consists of the classes and the objects and the interaction between them. It mainly

deals with the interaction between classes in the system, their behavior and properties of the

system. Apart from classes this also provides inheritance relationships in the project. Class

diagrams consist of basically two parts: first one is the member variables and class variables and

the second part consists of the total number of methods available in the class.

5.1.4 Sequence Diagram

The purpose of sequence diagram is to show the flow of functionality through a use case. In

other words, we call it a mapping process in terms of data transfers from the actor through the

corresponding objects.

The key points are:

 The main purpose is to represent the logical flow of data with respect to a process

 A sequence diagram displays the objects and not the classes.

25

5.2 USE CASE DIAGRAM

USER

Figure 5.1: User Diagram

 Sell Item

Shop

 Cart

Account

Buy Item

USER

Delete

Posted Items

Post

Edit/See

Details

Shipping

Details

Add Item

Remove

Item

Empty

Cart

26

ADMIN

ADMIN

Figure 5.2: Admin Diagram

Category

Check

Categories

Add

Categories

Sub-Category

Check

Sub-Categories

Add

Sub-Categories

27

5.3 DATA FLOW DIAGRAMS

A data flow diagram is graphical tool used to describe and analyze movement of data through a

system. These are the central tool and the basis from which the other components are developed.

The transformation of data from input to output through processed, may be described logically

and independently of physical components associated with the system. These are known as the

logical data flow diagrams. The physical data flow diagrams show the actual implements and

movement of data between people, departments and workstations. A full description of a system

actually consists of a set of data flow diagrams. Using two familiar notations Yourdon, Gane and

Sarson notation develops the data flow diagrams. Each component in a DFD is labeled with a

descriptive name. Process is further identified with a number that will be used for identification

purpose. The development of DFD’S is done in several levels. Each process in lower level

diagrams can be broken down into a more detailed DFD in the next level. The top-level diagram

is often called a ―context diagram”.

5.3.1 Context Diagram

It contains a single process, but it plays a very important role in studying the current system. The

context diagram defines the system that will be studied in the sense that it determines the

boundaries. Anything that is not inside the process identified in the context diagram will not be

part of the system study. It represents the entire software element as a single bubble with input

and output data indicated by incoming and outgoing arrows respectively.

A DFD is also known as a ―bubble chart‖ has the purpose of clarifying system requirements and

identifying major transformations that will become programs in system design. So it is the

starting point of the design to the lowest level of detail. A DFD consists of a series of bubbles

joined by data flows in the system.

5.3.2 DFD SYMBOLS

In the DFD, there are four symbols:

1. A square defines a source(originator) or destination of system data

2. An arrow identifies data flow. It is the pipeline through which the information flows. Data

move in a specific direction from an origin to a destination.

28

3. A circle or a bubble represents a process that transforms incoming data flow into outgoing

data flows.

4. An open rectangle is a data store, data at rest or a temporary repository of data

5.3.3 Symbols Elementary references

 Process that transforms data flow

 Data Flow

 Source or Destination of data

 Data Store

5.3.4 Constructing a DFD

Several rules of thumb are used in drawing DFD’S:

1. Process should be named and numbered for an easy interface. Each name should be

representative of the process.

2. The direction of flow is from top to bottom and from left to right. Data traditionally flow

from source to the destination although they may flow back to the source. One way to

indicate this is to draw long flow line back to a source. An alternative way is to repeat the

source symbol as a destination. Since it is used more than once in the DFD it is marked with

a short diagonal.

3. When a process is exploded into lower level details, they are numbered.

4. The names of data stores and destinations are written in capital letters. Process and dataflow

names have the first letter of each work capitalized.

A DFD typically shows the minimum contents of data store. Each data store should contain all

the data elements that flow in and out.

Questionnaires should contain all the data elements that flow in and out. Missing interfaces

redundancies and like is then accounted for often through interviews.

29

5.3.5 Salient features of DFD’S

The DFD shows flow of data, not of control loops and decision are controlled considerations do

not appear on a DFD.

1. The DFD does not indicate the time factor involved in any process whether the data flow take

place daily, weekly or monthly.

2. The sequence of events is not brought out on the DFD.

5.3.6 Types of data flow diagrams

DFD’s are of two types

(a) Physical DFD

(b) Logical DFD

1. Physical DFD

Structured analysis states that the current system should be first understand correctly. The

physical DFD is the model of the current system and is used to ensurethat the current system has

been clearly understood. Physical DFDs shows actual devices, departments, and people etc.,

involved in the current system

2. Logical DFD

Logical DFDs are the model of the proposed system. They clearly should show the requirements

on which the new system should be built. Later during design activity this is taken as the basis

for drawing the system’s structure charts.

5.3.7 Rules Governing the DFD’S

Process

1. No process can have only outputs.

2. No process can have only inputs. If an object has only inputs than it must be a sink.

3. A process has a verb phrase level.

Data Store

1. Data cannot move directly from one data store to another data store, a process must move

data.

2. Data cannot move directly from an outside source to a data store, a process, which

retrieves, must move data from the source and place the data into data store.

3. A data store has a noun phrase level.

30

5.4 DATAFLOW DIAGRAMS FOR eMart

LEVEL 0: DFD

Figure 5.3: Level 0: DFD

USER

eMart

SYSTEM

ACCESS PRODUCTS

AND

UNAUTHORIZED

INFO

31

LEVEL 1: DFD

 IF AUTHORIZED

Figure 5.4: Level 1: DFD

USER

SIGN IN

ACCESS WEBSITE

LOGOUT

BUY

PRODUCT

ADD TO CART

PRODUCTS

SELL

PRODUCT

ACCOUNT

INFORMATION

VIEW

PRODUCT

32

LEVEL 2: DFD

 IF AUTHORIZED

Figure 5.5: Level 2: DFD

USER

SIGN IN

ACCESS WEBSITE

BUY

PRODUCT

ADD TO CART

PRODUCT

SELL

PRODUCT

ACCOUNT

INFORMATION

VIEW

PRODUCT
CHECKOUT

CONFIRM

BUY

POST

DETAILS

ACCOUNT

DETAILS

CHANGE

DETAILS

CHANGE

PASSWORD

BOUGHT

PRODUCT

DETAILS

POST

PRODUCT

DETAILS

SELL

PRODUCT

DETAILS

LOGOUT

33

LEVEL 3: DFD

 IF AUTHORIZED

IF SELL

Figure 5.6: Level 3: DFD

USER

SIGN IN

ACCESS WEBSITE

BUY

PRODUCT

ADD TO CART

PRODUCT

SELL

PRODUCT

ACCOUNT

INFORMATION

VIEW

PRODUCT
CHECKOUT

CONFIRM

BUY

POST

DETAILS

ACCOUNT

DETAILS

CHANGE

DETAILS

CHANGE

PASSWORD

BOUGHT

PRODUCT

DETAILS

POST

PRODUCT

DETAILS

SELL

PRODUCT

DETAILS

LOGOUT

SHIPMENT

DETAILS

POST

SHIPMENT

DETAILS

IF BUY

CONFIRM

DELIVERY

ASK FOR

REFUND

34

CHAPTER 6

PROJECT CODINGS

6.1 Home Page

<?php

include_once 'storescripts/start.php';

?>

<!DOCTYPE HTML>

<html>

<head><title>eMart Home</title>

<link rel="stylesheet" href="styles/default.css" />

<script type="text/javascript" src="scripts/jquery-2.0.3.min.js"></script>

</head>

<body>

<?php

include_once('header.php');

?>

<div id="pageContent">

<div></div>

<div id="categoryTab">

<table>

<tr>

<td>Categories<div id="categoryDiv">

<?php

 $categoryQry=mysqli_query($con,"Select * from category Order By category ASC");

 while($num=mysqli_fetch_array($categoryQry)){

 $cid=$num['cid'];

 echo '<div class="categoryBlocks"><u>'.$num['category'].'</u>

';

 $subcategoryQry=mysqli_query($con,"Select * from subcategory where cid='$cid' Order

By subcategory ASC");

 while($num2=mysqli_fetch_array($subcategoryQry)){

 echo ''.$num2['subcategory'].'
';

 }

 echo'</div>';

 }

 ?>

 </div></td>

 <td><form action="search.php" method="get"><input type="text" id="search"

name="search" /></td>

 <td><input type="submit" value="Search" /></form></td>

</tr>

</table></div></div></div>

</body></html>

35

6.2 Search Page

<?php

include_once 'storescripts/start.php';

?>

<!DOCTYPE HTML>

<html>

<head>

<title>

Sell Your Products

</title>

<script type="text/javascript" src="scripts/jquery-2.0.3.min.js"></script>

<link rel="stylesheet" href="styles/default.css" />

<link rel="stylesheet" href="styles/product.css" />

</head>

<body>

<?php include_once 'header.php';

$searchQuery=mysqli_query($con,"SELECT * FROM sell where title LIKE '%$searchTag%'

OR description LIKE '%$searchTag%' ORDER By date desc");

$searchCount=mysqli_num_rows($searchQuery);

?>

<div id="pageContent">

<h3>Results found for <span style="text-decoration: underline;color: #494f6e;font-family:

ARIAL;"><?php echo ucwords($searchTag); ?></h3>

<?php

if($searchCount>=1){

echo '<div id="productBox">';

echo '<table id="myTable" class="tablesorter"><thead><tr><th

style="width:50%">Product</th><th>Product Information</th><th>Price</th></tr></thead>';

while($searchNum=mysqli_fetch_array($searchQuery)){

 $photo=$searchNum['photo'];

 $scidPhoto=explode("../",$photo);

 echo '<tbody><tr><td><img

style="float:left;" src="'.end($scidPhoto).'" alt="Unable To display Image"

/>'.$searchNum['title'].'</td><td>Condition:

'.$searchNum['type'].'
'.$searchNum['warrantyDuration'].'

'.$searchNum['warranty'].'</td>';

 echo '<td>Rs '.$searchNum['price'].'/-</td></tr></tbody>';

}

echo '</table></div><hr />';

}

?>

</div>

</body>

</html>

36

6.3 Registration Page

<script>

$(function(){

 $("#getdate").datepicker();

});

</script>

<script type="text/javascript" src="scripts/user.js"></script>

</head>

<body>

<?php

include_once('header.php');

?>

<div id="pageContent">

<div>Welcome</div>

<div id="rightSide">

<form name="regForm" method="post" action="backend/reg.php" onsubmit="return reg();">

<table>

<tr><td><label>New User! Register Here</label></td></tr>

<tr><td>First Name:</td><td><input type="text" name="first" /></td></tr>

<tr><td>Last Name:</td><td><input type="text" name="last" /></td></tr>

<tr><td>Email:</td><td><input type="email" name="email" /></td></tr>

<tr><td>Password:</td><td><input type="password" name="pass" /></td></tr>

<tr><td>Re-Enter Password:</td><td><input type="password" name="cpass"

/></td></tr>

<tr><td>Address:</td><td><textarea style="max-height: 80px;max-width:

300px;" name="address"></textarea></td></tr>

<tr><td>State:</td><td><input type="text" name="state" /></td></tr>

<tr><td>City:</td><td><input type="text" name="city" /></td></tr>

<tr><td>Pin Code:</td><td><input type="text" name="pin" /></td></tr>

<tr><td>Country:</td><td><input type="text" name="country" /></td></tr>

<tr><td>Gender:</td><td><input type="radio" value="Male"

name="gender" id="male" />Male<input type="radio" value="Female" name="gender"

id="female" />Female</td></tr>

<tr><td>Date Of Birth:</td><td><input type="text" name="dob" id="getdate"

/></td></tr>

<tr><td colspan="2"><input type="checkbox" name="tc" />I Agree to the <a href=""

target="_blank">Terms And Conditions</td></tr>

<tr><td><input type="submit" value="Register" /></td></tr>

</table>

<div id="result" class="errors"></div>

</form>
</div></div>

37

6.4 Sell Page

<h4>Title</h4>

<input type="text" maxlength="50" name="title" id="title" />

<h4>Category</h4>

<select name="categorySel" id="categorySel" onchange="subCategory()">

<option value="0">Select</option>

<?php

$categoryQry=mysqli_query($con,"Select * from category Order By category ASC");

while($num=mysqli_fetch_array($categoryQry)){

 echo '<option value="'.$num['cid'].'">'.$num['category'].'</option>';

}?></select>

<select id="subCategorySelect" name="subCategorySelect">

</select></div><hr />

<div id="warrantyDiv">

<h4>Type</h4>

<select id="productType" name="productType">

<option value="New">New</option>

<option value="Used">Used</option>

</select>

<h4>Warranty</h4>

<select id="warranty" name="warranty" onchange="warrantyCheck()">

<option value="Manufacturer Warranty">Manufacturer Warranty</option>

<option value="Seller Warranty">Seller Warranty</option>

<option value="No Warranty">No Warranty</option>

</select>

<h4>Warranty Duration</h4>

<select id="duration" name="duration">

<option value="6 Months">6 Months</option>

<option value="1 Year">1 Year</option>

<option value="2 Years">2 Years</option>

</select></div><hr />

<div id="photoDiv">

<h4>Product Image</h4>

<input type="file" name="photoSelect" id="photoSelect" onchange="preview(this)" />

</div><hr />

<div id="descriptionDiv">

<h4>Description</h4>

<textarea id="description" name="description" ></textarea>

</div><hr />

<div id="priceDiv">

<h4>Price</h4>

<input type="text" name="price" id="price" />(Enter In number)

<h4>Quantity</h4>

<input type="text" name="quantity" id="quantity" />(Enter In number)</div></form>

38

6.5 User Shop Page

<div id="userInfo">

<h3><?php echo $userD['first'].' '.$userD['last'].'\'s Shop'; ?></h3>

Contact at Email ID:
<?php echo ' '.$userD['email']; ?>

<table>

<tr><th>Products Posted</th><th>Products Sold</th></tr>

<tr><td><?php echo $countNum; ?></td><td><?php echo $countNum2; ?></td></tr>

</table>

</div>

<div id="userProducts">

<?php

$countQuery=mysqli_query($con,"SELECT * FROM sell WHERE user='$ssid'");

while($countFetch2=mysqli_fetch_array($countQuery)){

 $img=$countFetch2['photo'];

 $img1=explode("../",$img);

 $expDate=explode(" ",$countFetch2['date']);

 $covDate=date("F j",strtotime($expDate[0]));

 echo '<div id="userProd">';

 echo '<img src="'.end($img1).'"

alt="Display Problem" />
';

 echo 'Name: '.$countFetch2['title'].'
';

 echo 'Price: '.$countFetch2['price'].'
';

 echo 'Posted On: '.$covDate.'';

 echo '</div>';

}

?>

</div>

39

6.6 Product Page

<div>

<?php

if($scidCount>=1){

echo '<div id="productBox">';

echo '<table id="myTable" class="tablesorter"><thead><tr><th

style="width:50%">Product</th><th>Product Information</th><th>Price</th></tr></thead>';

while($scidNum=mysqli_fetch_array($scidQuery)){

 $photo=$scidNum['photo'];

 $scidPhoto=explode("../",$photo);

 echo '<tbody><tr><td><img

style="float:left;" src="'.end($scidPhoto).'" alt="Unable To display Image"

/>'.$scidNum['title'].'</td><td>Condition:

'.$scidNum['type'].'
'.$scidNum['warrantyDuration'].'

'.$scidNum['warranty'].'</td>';

 echo '<td>Rs '.$scidNum['price'].'/-</td></tr></tbody>';

}

echo '</table></div><hr />';

}

else

{

 echo '<div>No Products To display Under this Category
Post one

yourself now</div>';

}

?>

</div>

40

6.7 Shipment Page

<form action="backend/shipBack.php" method="post">

<table>

<tr><td>Product:</td><td><img width="60px" height="60px" src="<?php echo

end($shipmentPhoto); ?>" alt="Image Cannot be displayed" />
<?php echo

$shipmentNum2['title']; ?></td></tr>

<tr><td colspan="2"><input type="hidden" value="<?php echo $transId; ?>" name="transID"

/></td></tr>

<tr><td>Courier Company Name:</td><td><input type="text"

name="courierName" /></td></tr>

<tr><td>Shipping Date:</td><td><input type="text" id="courierDate"

name="courierDate" /></td></tr>

<tr><td>Track ID:</td><td><input type="text" name="courierTrack"

/></td></tr>

<tr><td>Website:</td><td><input type="text" name="courierWebsite"

/></td></tr>

<tr><td colspan="2"><input type="submit" value="Save" /></td></tr>

</table>

</form>

<form action="backend/shipBack.php" method="post">

<table>

<tr><td>Product:</td><td><img width="60px" height="60px" src="<?php echo

end($shipmentPhoto); ?>" alt="Image Cannot be displayed" />
<?php echo

$shipmentNum2['title']; ?></td></tr>

<tr><td colspan="2"><input type="hidden" value="<?php echo $transId; ?>" name="transID"

/></td></tr>

<tr><td>Courier Company Name:</td><td><input type="text" value="<?php

echo $shipNum['courier']; ?>" name="editCourier" /></td></tr>

<tr><td>Track ID:</td><td><input type="text" value="<?php echo

$shipNum['track']; ?>" name="editTrack" /></td></tr>

<tr><td>Shipping Date:</td><td><input type="text" value="<?php echo

$shipNum['shipDate']; ?>" id="editDate" name="editDate" /></td></tr>

<tr><td>Website:</td><td><input type="text" value="<?php echo

$shipNum['website']; ?>" name="editWebsite" /></td></tr>

<tr><td colspan="2"><input type="submit" value="Update" /></td></tr>

</table>

</form>

41

6.8 Gateway Page

<div id="mainDiv">

<img src="styles/payment/payment-gateway.png" width="400px" height="200px" alt="Payment

Gateway" />

<table>

<tr><td>Payable Amount:</td><td>

<input type="hidden" id="hiddenAmount" value="<?php echo $ordernum; ?>" />

<input type="hidden" id="totalAmount" value="<?php echo $total; ?>" />

<?php echo "Rs ".$total."/-"; ?></td></tr>

<tr><td>Credit Card Number:</td><td><input type="text" id="credit"

name="credit" /></td></tr>

<tr><td>Name on Card:</td><td><input type="text" id="card" name="card"

/></td></tr>

<tr><td>CVV Number:</td><td><input type="text" id="cvv" name="cvv"

/></td></tr>

<tr><td>Expiry Date:</td><td><input type="text" id="expire" name="expire"

/></td></tr>

<tr><td colspan="2"><button onclick="validatePay()">Pay Now</button><button

onclick="cancelPay('<?php echo $ordernum; ?>')">Cancel</button></td></tr>

</table>

<div>

</div>

</div>

42

6.9 Help Page

<!DOCTYPE HTML>

<html>

<head>

<title>Help Page</title>

<link rel="stylesheet" href="styles/default.css" />

<link rel="stylesheet" href="styles/help.css" />

</head>

<body>

<?php include_once 'header.php'; ?>

<div id="pageContent">

<h2>EasyMart Help Page</h2>

This is where you will get information of everything, you will need to know.

<div id="howBuy">

<h3>How To Buy</h3>

First select a category to buy product from.

Browse for your choice of product.

If found click it and buy.

Confirm your product & delivery address and Click on buy

We currently have COD(Cash on Delivery) payment.
So you have to pay, when the

product will be delivered to you at your doorstep.

</div>

<div id="howSell">

<h3>How To Sell</h3>

Just click on sell found on the top bar

Enter the specific details and upload the Image of product.

Click on post and that's it, you have made yourself a seller on easymart.

</div>

<h3>Note:</h3>

You have to be logged in or registered to Buy/Sell

For any other info, please feel free to contact us at helpdesk@easymart.com

</div>

</body>

</html>

43

6.10 Ads Div Page

<div id="adss">

<marquee behavior="alternate" scrolldelay="-10000">

</marquee>

</div>

<style>

#adss

{

 width: 820px;

 height: 120px;

 overflow: hidden;

}

#adss img

{

 width:820px;

 height: 120px;

}

</style>

44

CHAPTER 7

SYSTEM TESTING

7.1 Test Cases

Registration Form

Fields Errors Solutions

First Name If left empty :- show ―All

fields mandatory‖

Do not left the field empty

Last Name If left empty :- show ―All

fields mandatory‖

Do not left the field empty

Email If left empty :- show ―All

fields mandatory‖

If invalid email type:- show

―Invalid email‖

Do not left the field empty

Enter correct email type such

as ―xyz@zyx.com‖

Password If left empty :- show ―All

fields mandatory‖

If length less than 6:- show

―Password length must be at

least 6 characters long‖

Do not left the field empty

Enter password that is at least

6 characters long

Re-Enter Password If left empty :- show ―All

fields mandatory‖

If doesn’t match Password

field:- show ―Confirm

password doesn’t match‖

Do not left the field empty

Type same password as above

field

Address If left empty :- show ―All

fields mandatory‖

Do not left the field empty

State If left empty :- show ―All

fields mandatory‖

Do not left the field empty

City If left empty :- show ―All

fields mandatory‖

Do not left the field empty

Pincode If left empty :- show ―All

fields mandatory‖

Do not left the field empty

Country If left empty :- show ―All

fields mandatory‖

Do not left the field empty

Gender If left unchecked :- show ―All

fields mandatory‖

Do not left the field empty

Date of Birth If left empty :- show ―All

fields mandatory‖

Do not left the field empty

Terms and Conditions If left unselected:- show ―All

fields mandatory‖

Do not left the field empty

Table 7.1

45

Login Form

Fields Errors Solutions

Email If left empty :- show ―Please

enter both email and

password‖

If email doesn’t exist:- show

―User with this email does not

exist‖

Do not left the field empty

Enter email if you have

registered before and activated

your account

Password If left empty :- show ―Please

enter both email and

password‖

If password doesn’t match

with above email:- show

―Password entered does not

match‖

Do not left the field empty

Enter password that you used

at the time of registration or

when changing your password

Table 7.2

Sell Form

Fields Errors Solutions

Title If left empty :- show ―Please

enter both email and

password‖

Do not left the field empty

Category If left empty :- show ―Please

enter both email and

password‖

Do not left the field empty

Product Image If left empty :- show ―Please

enter both email and

password‖

Do not left the field empty

Description If left empty :- show ―Please

enter both email and

password‖

If entered except numbers:-

―Quantity in number only‖

Do not left the field empty

Enter in number only

Price If left empty :- show ―Please

enter both email and

password‖

If entered except numbers:-

―Price in number only‖

Do not left the field empty

Enter in number only

Table 7.3

46

Change Account Details

Fields Errors Solutions

First Name If left empty :- show ―Enter

First Name‖

Do not left the field empty

Last Name If left empty :- show ―Enter

Last Name‖

Do not left the field empty

Address If left empty :- show ―Enter

Address‖

Do not left the field empty

State If left empty :- show ―Enter

State‖

Do not left the field empty

City If left empty :- show ―Enter

City‖

Do not left the field empty

Pin code If left empty :- show ―Enter

Pin Code‖

Do not left the field empty

Country If left empty :- show ―Enter

Country‖

Do not left the field empty

Date of Birth If left empty :- show ―Enter

date of birth‖

Do not left the field empty

Table 7.4

Change Password

Fields Errors Solutions

Old Password If left empty :- show ―All

Fields Mandatory‖

If does not match your old

password :- show ―Old

password doesn’t match‖

Do not left the field empty

Enter your correct old

password

New Password If left empty :- show ―All

Fields Mandatory‖

If length less than 6 :- show

―Password should be at least 6

Characters long‖

Do not left the field empty

Enter proper length password

Confirm Password If left empty :- show ―All

Fields Mandatory‖

If doesn’t matches above

password :- show ―Confirm

password doesn’t match‖

Do not left the field empty

Enter exact password as above

field

Table 7.5

Buy Form

Field Error Solution

Address If left unchecked and empty :-

show ―Enter proper address‖

Do not left the field

unchecked and empty

Table 7.6

47

Gateway Form

Fields Errors Solutions

Credit card number If left empty :- show ―All

details mandatory‖

If length not equal to 16

numbers long :- show ―Card

number length should be 16‖

Do not left the field empty

Enter 16 digit card number

properly

Name on card If left empty :- show ―All

details mandatory‖

Do not left the field empty

Cvv number If left empty :- show ―All

details mandatory‖

If length not equal to 3

numbers long :- show ―Card

number length should be 3‖

Do not left the field empty

Enter 3 digit cvv number

properly

Expiry date If left empty :- show ―All

details mandatory‖

Do not left the field empty

Table 7.7

Verified By Visa Form

Fields Erros Solutions

Password If left empty :- show ―Enter

password‖

If length less than 6 characters

:- show ―Password length

should 6 characters long‖

Do not left the field empty

Enter atleast 6 characters long

password

Table 7.8

7.2 Unit /System Testing

The software literature (notably the military standards) define a unit along the lines of the

smallest collection of code which can be [usefully] tested. Typically this would be a source file, a

package (as in Ada), or a non-trivial object class. A hardware development analog might be a PC

board. Unit Testing is just one of the levels of testing which go together to make the ―big

picture‖ of testing a system. It complements integration and system level testing. It should also

complement (rather than compete with) code reviews and walkthroughs. Unit testing is generally

seen as a ―white box‖ test class. That is, it is biased to looking at and evaluating the code as

implemented, rather than evaluating conformance to some set of requirements.

Importance of Unit Testing

 For any system of more than trivial complexity, it is highly inefficient and ineffective to

test the system solely as a ―big black box‖. Any attempt to do so quickly gets lost in a

48

mire of assumptions and potential interactions. The only viable approach is to perform a

hierarchy of tests, with higher level tests assuming―reasonable and consistent behaviour‖

by the lower level components, and separate lower level tests to demonstrate these

assumptions.

 It would be infeasible to test a space shuttle as a system if you had to simultaneously

question the design of every electrical component. It is similarly infeasible to test a large

software system as a whole if you have to simultaneously question whether every line of

code, every ―if statement‖, was correctly written.

 Boris Beizer has defined a progression of levels of sophistication in software testing. At

the lowest level, testing is considered no different to debugging. At the higher levels,

testing becomes a mindset which aims to maximise the system reliability. His approach

stresses that you should ―test‖ in the way which returns the greatest reliability

improvement for resources spent rather than mindlessly performing some ―theoretically

neat‖ collection of tests.

 Experience has shown that unit-level testing (and reviewing) is very cost effective. It

provides a much greater reliability improvement for resources expended than system

level testing. In particular, it tends to reveal bugs which are otherwise insidious and are

often catastrophic −like the strange system crashes that occur in the field when something

unusual happens.

What type of documentation is required?

Like the required level of formality, the appropriate level of documentation for unit testing varies

from project to project, and even within a project. There may be minimum standards imposed by

outside agencies, but generally there are not. The minimum requirements for the documentation

are:

 It must be reviewable. That is, the records must be sufficient for others to review the

adequacy of the testing.

 It must be sufficient for the tests to be repeatable. This is important for regression testing

- unless you are sure you can repeat a test, you can never be sure if you have fixed the

cause of a test failure. Repeatability is also important for analysing failures −both failures

during the initial testing, and subsequent failures. Knowing exactly what was and was not

tested, and exactly what passed and what failed during testing is an invaluable aid in

49

isolating difficult-to-reproduce field failures. Repeatability not only implies the need to

record in reasonable detail how the test is run and what data is used, but also implies

identification of the version of code under test.

 The records must be archivable. That is, they must be sufficiently well kept and identified

that they can be found if required, at a later time (perhaps years later when analysing a

field failure).

What “test environment” should be used?

 As a general rule of thumb ―the rest of the system is the best test harness‖ for unit testing.

Performing unit tests in a system environment maximises your likelihood of identifying

problems. On the other hand, the tester should not allow this ―rule‖ to limit or hinder their

testing. They should use the rest of the system to generate and analyse test scenarios, but

should not feel constrained from intruding into the system with debuggers, special test

code, or other aids.

 Some people feel that for testing to be valid, it must be performed on exactly the code to

be delivered, running exactly in its final environment. Although this is appropriate for

final acceptance testing at the system level, it can actually be counter-productive at the

lower levels. At the unit test level it is far preferable to ―put in some debug statements‖ to

help perform a particular test, than to avoid the test altogether in a mistaken attempt to

ensure fidelity.

 It is often easy to make the system an almost ideal test harness. For example, removing

restrictions on selectable system parameters when in a ―system test mode‖ may make it

trivial to force otherwise difficult ―should not occur‖ special cases. Providing a capability

to inject arbitrary byte sequence for internal messages may be trivial to implement buy

extremely useful for testing. When considered early in the design process, these sorts of

capabilities are often trivial to provide.

50

CHAPTER 8

SCREENSHOTS OF THE PROJECT

8.1 DATABASE SCREENSHOTS

FIGURE 8.1: USER TABLE OF WEBSITE

51

FIGURE 8.2: CATEGORY TABLE OF WEBSITE

52

FIGURE 8.3: SUB-CATEGORY TABLE OF WEBSITE

53

FIGURE 8.4: SELL TABLE OF WEBSITE

54

FIGURE 8.5: BUY TABLE OF WEBSITE

55

FIGURE 8.6: SHIPMENT TABLE OF WEBSITE

56

8.2 WEBPAGES SCREENSHOTS

FIGURE 8.7: HOME PAGE OF WEBSITE

57

FIGURE 8.8: REGISTRATION PAGE OF WEBSITE

58

FIGURE 8.9: PRODUCT DISPLAY PAGE OF WEBSITE

59

FIGURE 8.10: PRODUCT DESCRIPTION PAGE OF WEBSITE

60

FIGURE 8.11: BUY CONFIRM PAGE OF WEBSITE

61

FIGURE 8.12: BUY PAGE OF WEBSITE

62

FIGURE 8.13: ACCOUNT PAGE OF USER

63

FIGURE 8.14: SELL PAGE FOR USER

64

FIGURE 8.15: HELP PAGE FOR USER

65

FIGURE 8.16: RESULT PAGE FOR SEARCH

66

FIGURE 8.17: ADD TO CART PAGE FOR USER

67

FIGURE 8.18: CHECKOUT PAGE FOR CART

68

FIGURE 8.19: SHIPMENT PAGE FOR BUYER AND SELLER

69

FIGURE 8.20: PAYMENT GATEWAY FOR ONLINE PAYMENTS

70

FIGURE 8.21: VERIFIED BY VISA PAGE

71

CHAPTER 9

CONCLUSION

This Project is of large significance for all companies whether it be a small company or a huge

one. With the help of this web application one can easily shop from home with no worries. Also

its interface is very easy to understand. It has following advantages:

• With this project, the efforts made to perform the required operations are reduced.

• One can easily shop online in future reference.

• Once online, this website can be accessed on any platform.

9.1 FUTURE SCOPE OF THIS PROJECT

eMart Project is an ecommerce website. It ensures user friendly and easy to use website with

quality products that can be purchased. eMart website also provides provisions for administrator

to easily manage the content of the website. It reduces human efforts and resources (transport) to

go to shops and buy products or sell their products. In this very busy lifestyle this system can

save the precious time of the customers by obviating the requirement of going to a shop in a

heavy traffic. Today’s world is definitely a world of internet, there is a computer in almost every

second home and this radio will further improve in few years. So, it’s this online shopping and

selling system which is going to rule in the future.

72

BIBLIOGRAPHY

1. Website Forums - PHP and jQuery.

2. Websites – www.google.com, www.w3schools.com, www.wikipedia.com,

www.youtube.com, www.jquery.com.

3. For textbooks - Head First with PHP, Head First with HTML and CSS.

http://www.google.com/
http://www.w3schools.com/
http://www.wikipedia.com/
http://www.youtube.com/
http://www.jquery.com/

